Logo des digitalen Schulbuchs inf-schule.de. Schriftzug in Zustandsübergangsdiagramm eines endlichen Automaten.

Fehlererkennung

Grenzen des Übertragungsmediums

Die Übertragung von Daten ist nie ganz perfekt. Durch Grenzen technischer Systeme und äußere Einflüsse kann es immer vorkommen, dass Daten während des Transports verändert werden.

unsiches Übertragungsmedium

Ein Grundproblem der Datensicherung besteht darin, Fehler bei der Datenübertragung zwischen zwei Rechnern zu erkennen und geeignete Maßnahmen zur Behandlung von Fehlern zu ergreifen.

Fehlererkennung mit einem Zusatzbit

Sandy will Emmy eine Bitfolge senden. Felice, die für die Übertragung zuständig ist, ändert ab und zu ein Bit ab. Sandy und Emmy haben sich ein Verfahren ausgedacht, mit dem sie die Veränderung von Bits überprüfen wollen. Sandy zählt hierzu die Einsen in der zu übertragenen Bitfolge. Ist die Anzahl ungerade, so fügt Sandy der Bitfolge eine 1 hinzu, ansonsten eine 0.

Fehlererkennung mit Paritätsbit

Aufgabe 1

(a) Wie kann Emmy überprüfen, ob Felice ein Bit abgeändert hat? Funktioniert das auch, wenn Felice das Zusatzbit abändert?

(b) Kann Emmy feststellen, welches Bit abgeändert wurde?

(c) Felice ändert mehrere Bits ab. Welche Möglichkeiten ergeben sich für Emmy, solche Veränderungen zu erkennen?

(d) Du kannst das beschriebene Szenario auch mit dem Programm fehlererkennungParitaet.py erkunden. Führe das Programm mehrfach aus und interpretiere die ausgegebenen Ergebnisse.

Aufgabe 2 - Erweiterter Sender und Empfänger

Passe den Sender und Empfänger so an, dass mit Hilfe eines Paritätsbits Fehler erkannt werden. Im Fehlerfall soll eine entsprechende Meldung ausgegeben werden. Implementiere zuerst den Sender und teste ihn mit dem Universaltransceiver. Implemeniere dann den Empfänger und teste das System. Tipp: Du kannst die Implementierung schlank halten, indem Du die Paritätsbit-Funktion in eine Datei paritaetsbit.py auslagerst und mit from paritaetsbit import * importierst.

Aufgabe 3

Das Prüfverfahren wird jetzt verbessert. Diskutiere jeweils die möglichen Fehlerfälle und beurteile die Güte des Verfahrens.

(a) Prüfsummenverfahren: Gegeben ist eine Folge von Bytes (hier dezimal dargestellt) wie z.B. 72, 65, 78, 76, 79. Aus dieser Folge wird die Summe berechnet: 72 + 65 + 78 + 76 + 79 = 370. Damit das Ergebnis wieder ein Byte darstellt, bildet man anschließend den Rest bei der Division durch 256: 370 % 256 = 114. Versendet wird jetzt die erweiterte Nachricht 72, 65, 78, 76, 79, 114.

(b) Prüfrestverfahren: Gegeben ist eine Folge von 3 Bytes (hier dezimal dargestellt) wie z.B. 72, 65, 78. Aus dieser Folge von Zahlen wird eine 9-stellige Zahl gebildet: 072065078. Diese Zahl wird durch einen festen "geeigneten" Divisor geteilt: 72065078 % 171 = 35. Der Rest 35 wird jetzt als "Prüfzahl" benutzt und zusammen mit den Ausgangszahlen übertragen: 72, 65, 78, 35.

Fehlererkennung mit einem verbesserten Verfahren

Sandy und Emmy benutzen jetzt ein verbessertes Verfahren, um Fehler bei der Übertragung der Bitfolgen zu erkennen.

Fehlererkennung - CRC

Sie haben sich eine Funktion crc besorgt, mit der sie aus einer gegebenen Bitfolge eine Folge von Zusatzbits bestimmen können. Wie diese Funktion die Zusatzbits berechnet, haben sie nicht verstanden. Verwenden können sie die Funktion dennoch.

Aufgabe 4

(a) Teste erst einmal die Funktion crc.py. Benutze hierzu Dialoge wie den folgenden:

>>> crc('01011101')
'0110'

(b) Benutze anschließend das Testprogramm fehlererkennungCRC.py zur Fehlererkennung mit der crc-Funktion. Führe das Programm mehrfach durch. Ändere auch die voreingestellte Fehlerwahrscheinlichkeit.

(c) Wie gut ist das Fehlererkennungsverfahren mit der crc-Funktion? Kann es alle möglichen Veränderungen der vorgegebenen Bitfolge erkennen?

(d) Wenn du genauer wissen willst, was die crc-Funktion macht, dann benutze das Programm crc_demo.py und rufe es z.B. folgendermaßen auf:

>>> crc('1001101100')
10011011000000
10011
X

Fehler melden

X

Suche