Erkundung: disjunktive Normalform
Schritt 2: Aufstellen eines Schaltterms
Auf der Seite Problem: Ladestation für ein Elektroauto haben wir eine Schalttabelle für die Steuerung unserer Ladestation aufgestellt. Um ein Schaltnetz konstruieren zu können, müssen wir zunächst einen Schaltterm aufstellen, der die Schalttabelle berechnet. Das ist manchmal gar nicht so einfach. Wir lernen deshalb hier ein strukturiertes Verfahren kennen, wie man aus einer Schalttabelle einen Schaltterm erstellen kann. Dazu betrachten wir zunächst eine einfachere Schalttabelle:
Aufgabe 1
Variable a | Variable b | Ergebnis e |
$ a \wedge \bar b $
Aufgabe a) |
Aufgabe b) |
$ (\bar a \wedge \bar b) \vee (a ∧ \bar b) $
Aufgabe c) |
---|---|---|---|---|---|
0 | 0 | 1 | |||
0 | 1 | 0 | |||
1 | 0 | 1 | |||
1 | 1 | 0 |
- Ergänze die 4. Spalte in der Tabelle.
-
Der Term $a \wedge \bar b $ (4. Spalte), beschreibt die dritte Zeile der Schalttabelle ($a=1$, $b=0$).
Finde analog dazu einen Term, der die erste Zeile der Schalttabelle ($a=0$, $b=0$) beschreibt. Trage diesen Term in der 5. Spalte der Tabelle ein.
Der Term $a \wedge \bar b $ (4. Spalte), ist nur für die Variablenbelegung $a=1$, $b=0$ wahr. Für alle anderen Variablenbelegungen ist er falsch.
Du suchst einen also Term, der genau dann wahr ist, wenn $a$ nicht wahr ist und $b$ nicht wahr ist. In allen anderen Fällen soll der Term falsch sein.
- Der Term $ (\bar a \wedge \bar b) \vee (a ∧ \bar b) $ heißt disjunktive Normalform. Er steht in der 6. Spalte der Tabelle. Ergänze diese Spalte und vergleiche mit der Spalte „Ergebnis e“.
- Beschreibe, wie man die disjunktive Normalform zu einer Schalttabelle bildet.
- Begründe, dass die Terme $\bar a \wedge b$ und $a \wedge b$ nicht in der disjunktiven Normalform auftauchen.
Aufgabe 2
x | y | Ergebnis |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
Du suchst einen Term, der genau dann wahr ist, wenn
- $x$ nicht wahr ist und $y$ wahr ist
- $x$ wahr ist und $y$ nicht wahr ist
- ...
Aufgabe 3
s | n | g | L |
---|---|---|---|
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 |
0 | 1 | 1 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 0 |