i

Exkurs - Logische Verknüpfungen

Aussagen und ihre Verknüpfung

Eine Aussage ist ein Satz (sprachliches Gebilde), bei dem man eindeutig festlegen kann, dass er wahr oder falsch ist. Aussagen lassen sich also Wahrheitswerte zuordnen.

Beispiel: In der durch die Abbildung beschriebenen Situation sind folgende Aussagen wahr bzw. falsch:

Pasch

Die Augenzahl von Würfel 2 beträgt 5. (wahr)
Die Augenzahl von Würfel 1 beträgt 3. (falsch)
Die Augenzahl von Würfel 1 ist gleich der Augenzahl von Würfel 2. (wahr)

Häufig verknüpft man Aussagen zu komplexeren Aussagen.

Beispiel: (Situationsbeschreibung s.o.)

"Pasch": 
Die Augenzahl von Würfel 1 ist gleich der Augenzahl von Würfel 2
und
die Augenzahl von Würfel 2 ist gleich der Augenzahl von Würfel 3. (wahr)

Hier geht man von den beiden folgenden - mit A und B bezeichneten - Aussagen aus.

A: Die Augenzahl von Würfel 1 ist gleich der Augenzahl von Würfel 2.
B: Die Augenzahl von Würfel 2 ist gleich der Augenzahl von Würfel 3.

Die zusammengesetzte Aussage hat dann die Struktur:

"Pasch": A und B

Entsprechend kann man eine Aussage für "kein Pasch" aus den vorgegebenen Aussagen bilden.

"kein Pasch": 
Die Augenzahl von Würfel 1 ist nicht gleich der Augenzahl von Würfel 2
oder
die Augenzahl von Würfel 2 ist nicht gleich der Augenzahl von Würfel 3. (falsch)

Die Struktur dieser zusammengesetzten Aussage lässt sich so beschreiben.

"kein Pasch": (nicht A) oder (nicht B)

Im Folgenden betrachten wir die in den Beispielen vorkommenden logischen Verknüpfungen genauer.

Die nicht-Verknüpfung

Die logische nicht-Verknüpfung kehrt den Wahrheitswert einer Aussage um. Sie verneint also eine Aussage, man spricht daher auch von einer Negation.

A nicht A
falsch wahr
wahr falsch

Wenn beispielsweise die Aussage A:Die Augenzahl von Würfel 1 ist 2. (falsch) negiert wird, ergibt sich die Aussage (nicht A):Die Augenzahl von Würfel 1 ist nicht 2. (wahr).

Die und-Verknüpfung

Die logische und-Verknüpfung wird auch Konjunktion genannt. Sie ist folgendermaßen festgelegt:

A B A und B
falsch falsch falsch
falsch wahr falsch
wahr falsch falsch
wahr wahr wahr

Eine mit und zusammengesetzte Aussage ist also nur dann wahr, wenn beide Teilaussagen - die erste und die zweite - wahr sind.

So ist beispielsweise die aus den Aussagen A:Die Augenzahl von Würfel 1 ist gleich der Augenzahl von Würfel 2. (wahr) und B:Die Augenzahl von Würfel 2 ist gleich der Augenzahl von Würfel 3. (wahr) zusammengesetzte Aussage (A und B):Die Augenzahl von Würfel 1 ist gleich der Augenzahl von Würfel 2 und die Augenzahl von Würfel 2 ist gleich der Augenzahl von Würfel 3. wahr, da beide Teilaussagen wahr sind.

Die oder-Verknüpfung

Die logische oder-Verknüpfung wird auch Disjunktion genannt. Sie ist folgendermaßen festgelegt:

A B A oder B
falsch falsch falsch
falsch wahr wahr
wahr falsch wahr
wahr wahr wahr

Eine mit oder zusammengesetzte Aussage ist also dann wahr, wenn minderstens eine Teilaussage - die erste oder die zweite oder auch beide - wahr ist.

So ist beispielsweise die aus den Aussagen A:Die Augenzahl von Würfel 1 ist 3. (falsch) und B:Die Augenzahl von Würfel 1 ist 4. (falsch) zusammengesetzte Aussage (A oder B):Die Augenzahl von Würfel 1 ist 3 oder die Augenzahl von Würfel 1 ist 4. falsch, da beide Teilaussagen falsch sind.

Beachte, dass die logische oder-Verknüpfung nicht dem Entweder-Oder aus dem Alltag entspricht.

Logische Terme

Logische Terme werden aus Variablen für Wahrheitswerte und logischen Verknüpfungen (und manchmal auch den logischen Werten wahr und falsch) aufgebaut.

So ist beispielsweise (nicht A) oder (nicht B) ein logischer Term mit den Variablen A und B. Setzt man für die Variablen A und B Wahrheitswerte ein, so lässt sich der Wert des